APPENDIX V # REVISED PS WP-5 PENETRATION RATES OF ATV RECEIVERS ## SCENARIO 1 The following assumptions underlay the generation of the penetration curve shown in **Figure 1**. - o ATV signals will be downward compatible with NTSC; - o Three years subsequent to ATV introduction, ATV will exist in 15 percent of television broadcast stations, 5 of the 10 largest cable television programming networks, and 15 percent of cable system operators; - Consumer preference for ATV relative to conventional NTSC will be less than that exhibited for color TV versus black and white; - o The ATV receiver price in each year after introduction will be similar (in constant dollars) to the prices of color TV receivers in the same number of years after the introduction of color. - o Introduction of considerations of price elasticity. - o Europe and Japan would lead the U.S. in ATV implementation. Their technological experience and their initial higher volume demand would cause U.S. ATV receiver prices to be lower than they would have been if the U.S. were pioneering ATV alone (as it did with color television). These lower prices should cause ATV penetration rates to climb. # PROPOSED REVISION OF WP-5 ESTIMATE OF U.S. ATV RECEIVER PENETRATION RATES The solded area above and below the new curve reflects the current uncortaint represent in both cost and elasticity assumptions. ## SCENARIO 2 As an exploration of such a scenario, the ATV penetration in both Europe and Japan is then viewed more conservatively - on the basis of a dearth of ATV programming and slow acceptance of ATV technology. Figure 2 shows the lowering of the penetration curve of Figure 1 - if this scenario postulates that only one-half of the potential ATV demand in Europe and Japan actually occurs. # PENETRATION RATES OF ATV RECEIVERS UNDER FIRST ALTERNATIVE SCENARIO (Assumes 1/2 of Europe and Japan potential demand) FIGURE 2 TAL # **APPENDIX I** # **TEST AND DATA MATRIX** # SAMPLE DATA RECORDING SHEETS | | Page | |---------------------------------------|-------| | ATTC Test and Data Matrix | 1 - 9 | | Sample ATTC Data Recording Sheet | 10 | | Sample CableLabs Data Recording Sheet | 11 | | Sample CRC Data Recording Sheet | 12 | # FCC ADVISORY COMMITTEE ON ADVANCED TELEVISION SERVICE SYSTEMS SUBCOMMITTEE WORKING PARTY ON SYSTEM STANDARDS (SS/WP4) PROGRESS REPORT (SUBMISSION FOR THE FOURTH INTERIM REPORT) February 20, 1991 # FCC ADVISORY COMMITTEE ON ADVANCED TELEVISION SERVICE SYSTEMS SUBCOMMITTEE WORKING PARTY ON SYSTEM STANDARDS (SS/WP4) # PROGRESS REPORT (SUBMISSION FOR THE FOURTH INTERIM REPORT) # **Executive Summary** Systems Subcommittee Working Party 4 (SS/WP4) has the responsibility to examine all the available data gathered or developed by other working parties in the Advisory Committee and, based upon that information, recommend standards for an advanced television (ATV) service. The Working Party has agreed that its primary intention is to recommend a single standard for the terrestrial broadcasting of ATV, that a recommended system must be capable of being carried by cable systems, and that the recommendation will be based on consensus of the Working Party. The Working Party will recommend which proponent system(s) should be tested in the field. SS/WP4 has been working with the Advanced Television Test Center (ATTC), Cable Television Laboratories (CableLabs), and the Canadian Communications Research Centre (CRC) as they develop formats for reporting data. The Working Party has found the proposed formats suitable for the needs of SS/WP4. The Working Party has developed an outline for its final report. While some portions of the final report cannot be written until testing of the proponent systems is complete, other portions are being drafted currently. The Working Party has defined a process for recommending an ATV system. The Working Party plans to complete its final report for inclusion in the September 30, 1992 final report of the Advisory Committee. # I. Organization of the Working Party The Chair of SS/WP4 is Dr. Robert Hopkins, Executive Director of the Advanced Television Systems Committee. He is assisted by three Vice-Chairs: Mr. Hugo Gaggioni of Sony Advanced Systems, Mr. Bruce Sidran of Bell Communications Research, and Mr. Louis Williamson of American Television and Communications. Mr. Gerald Robinson of Scientific Atlanta serves as the Secretary. The Working Party, at its first meeting, agreed to the following Charter: The Working Party on System Standards shall recommend standards for the transmission of ATV based on information supplied by any and all other working parties in the Advisory Committee. The Working Party has held nine meetings. The average attendance at Working Party meetings is 25 persons; approximately 80 persons have attended one or more meetings. There are currently 70 members. # II. Summary of Progress Prior to the Third Interim Report The SS/WP4 progress report for the Third Interim Report listed a number of agreements reached in the Working Party. They are summarized here because of their importance in the work of SS/WP4: SS/WP4 intends to make recommendations based only on consensus. The primary intention of SS/WP4 is to recommend a single standard for ATV terrestrial broadcasting. Whatever system is recommended for terrestrial broadcast must be capable of being carried by cable systems. SS/WP4 will not document a standard in the manner of SMPTE or EIA, rather its role is to recommend a standard documented by others. # III. Progress Since the Third Interim Report While it was agreed in the April 11, 1989 meeting of SS/WP4 that recommendations would be based only on consensus, at subsequent meetings concerns were expressed that it may not be possible to reach consensus on a recommended standard. Several SS/WP4 members believed it was necessary to develop a process which would lead to a recommendation in the absence of consensus. A Task Force, chaired by Ron Gnidziejko of NBC, was established to examine possible processes. After several meetings of the Task Force, it was determined that there were no acceptable alternatives to consensus. Following that determination, at its October 25, 1990 meeting the Working Party re-affirmed its position that the recommendation of a standard would be based only on consensus. At meetings in April and June 1990, the Working Party discussed its role in "certifying" systems for field testing. Most members of the Working Party believed that only a small number of the proponent systems, perhaps only one, would be tested in the field. Some members expressed the view that the selection of proponent systems for field testing is part of the overall ATV selection process. Some members expressed the view that the purpose of field testing is to validate the final recommendation in actual over-the-air conditions. There was agreement that SS/WP4 should request responsibility for certification. At the June 21, 1990 meeting of the Systems Subcommittee, there was agreement that "SS/WP4 shall be the body to certify systems for field testing by SS/WP2." The Working Party recognizes that there will be volumes of data as a result of the testing process. It will be necessary to summarize data in the SS/WP4 final report. It will also be necessary to perform some data analysis to make a recommendation for an ATV standard. The Working Party established a Task Force, chaired by Hugo Gaggioni of Sony Advanced Systems, to consider what data would be needed by SS/WP4, where the data would come from, and how and by whom any necessary data reduction would be accomplished. The Task Force has been working with the testing laboratories to obtain answers to these questions. The ATTC has provided to the Working Party a matrix which lists the objective tests which will be performed and shows how the results will be recorded - as numerical values, graphs, photos, and video tape. The ATTC has also provided sample data recording sheets to the Task Force. Similar information has been provided by CableLabs and CRC. Appendix I contains the matrix and some of the sample data recording sheets. The Working Party has found the form of this information suitable for the needs of SS/WP4. The Task Force will continue to work with the laboratories commenting on the data recording sheets until a complete set is available. It must be noted that these discussions center on the presentation of information, not on what information will be gathered - SS/WP2 has specified what information will be gathered by the nature of its test procedures. The Working Party has developed a process to write the final report — including SS/WP4 recommendations. The first step in the process is to draft the outline of the final report. The Working Party established a Task Force, chaired by Bruce Sidran of Bellcore, to draft the final report and, as a first step, to propose an outline to the Working Party. The Working Party has approved a proposed outline which is contained in Appendix II. The first six chapters of the final report will include background information and contributions from other working parties. Work is underway to provide to other working parties details on the information needed by SS/WP4 in these sections. Appendix III shows the information flow between SS/WP4 and other working parties. Chapters seven through nine will contain an examination of the issues which must be considered in making a recommendation for an ATV standard, an analysis of each tested system, and the recommendations of the Working Party. Work is underway to write Chapter 7 which examines the issues and establishes the format which will be used to analyze the tested systems. The remainder of the final report will contain conclusions and information regarding work — related to the recommendation — which must be done in the future. The attachment to Appendix II gives more detailed information on the outline. The Working Party has defined a process for recommending a system for
an ATV service. The process is shown in Appendix IV. The critical objectives are viewed as desirable features of an ATV service and are expected to exceed minimum requirements. This is the information which will be contained in Chapter 7 of the final report. Each proponent system will be measured against the critical objectives. Systems which survive this process will be compared against each other by examining the differences and determining which system(s) could offer a superior service. The process has provisions for review or reconsideration as new information becomes available. ## IV. Future Work The Working Party will continue to work with the testing laboratories to complete the set of data reporting sheets prior to the onset of system testing. The Working Party plans to complete its final report for inclusion in the September 30, 1992 final report of the Advisory Committee. Information will be given to other working parties throughout 1991 to serve as guidance on the material needed by SS/WP4. The section of the final report which examines the issues which must be considered in making a recommendation is planned for completion prior to the onset of system testing. Each section analyzing a tested system will begin when testing of that system is complete. The recommendation and conclusions cannot be completed until all systems have been tested. Many members of the Working Party anticipate that differences in the proponent systems will be small. Making a choice between systems will be simplified if the number of proponent systems decreases to only one. The Working Party thus encourages the system proponents to find ways to combine their efforts to lead to one system which could be supported by the entire industry. # V. Appendices Attached to this progress report are the following Appendices: Appendix I Data Format Matrix and Sample Data Sheets Appendix II Outline of SS/WP4 Final Report Appendix III Information Flow in the Advisory Committee Appendix IV SS/WP4 Selection Process Appendix V SS/WP4 Documents: SS/WP4-0000 (Document Index), SS/WP4-0002 (Membership List), and SS/WP4-0026 - SS/WP4-0051 (Documents Released Since the Third Interim Report). # Objective Test Procedures, Sect. 1, 2: Image Resolution, System Performance (Sect. 2. System Performance Verification: Procedures used to detect any changes in system under test, no other use of data) | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | | |----------------------|---|------------------|-------|------|------------|---------|---------|---------|---|---|---------|--------------------------------------|---------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
VTR | DZVTR | Experts | Display | S=still, M=motion seq
T=test patient | Numerical
Taken/Reported | Graph | Photo | Таре | Notes | | XV.1
XVI.5 | 1.3.1 Luminance
Static Horiz.
Res. ATV | FO&C
Obj | | | 1 | | 5 | | T11 (zone plate) | Lim. H res. 5/1 x3(E)
Half-ampl. H res.
1 x3(E) | | Pic mon
Wvfm mon | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV.1 | 1.3.2 Luminance
Static Vert. Res
ATV. | EO& C | | | 1 |
! | 5 | | T11 (zone plate) | Lim. V res.
5/1 x3(E) | | Pic mon | Archive | Repeat for side panels
if applicable. (B)
Also log ZPG semings. | | XV.1 | 1.3.3 Luminance
Static Diag, Res.
ATV | EO&C | | | 1 | | 5 | | T11 (zone plate) | Lim. Diag. res.
5/1 x3(E) | | Pic mon | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings. | | XV(E).1
XVI(E).5 | 1.3.4 Luminance
Static Horiz, Res.
NTSC Revr (E) | EO&C
Obj | - | | | ı | 5 | | T11 (zone plate) | Lim. H res. 5/L (E)
Half-ampl. H res.
L (E) | | Pic mon
Wyfm mon | Archive | Also log ZPG settings | | XV(E).1 | 1.3.5 Luminance
Static Vert. Res.
NTSC Revr (E) | EO&C | | | | 1 | 5 | | T11 (zone plate) | Lim. V res.
5/1 (E) | | Pic mon | Archive | Also log ZPG scalings. | | XV(E).1 | 1.3.6 Luminance
Static Diag. Res.
NTSC Revr (E) | EO&C | | | | ı | 5 | | Til (zone plate) | Lim. Diag. res.
5/1 (E) | | Pic mon | Archive | Also log ZPG settings | | XV.1
XVI.4a | 1.3.7 Luminance
Dynamic Horiz.
Res. ATV | EO&C | | - | ı | | 5 | | T11 (zone plate,
moving) | Lim. H res.20/4 x3(E)
Half-ampl. H res.
4 x3(E) | | Pic mon
Wyfrn mon
(Gate I fr.) | Archive | Repeat for side panels if applicable. (E) Also log ZPG settings. | | XV.1 | 1.3.8 Luminance
Dynamic Vert.
Res ATV. | EO&C | | | 1 | | 5 | - | T11 (zone plate, moving) | Lim. V res.
20/4 x3(E) | | Pic mon
(Gate 1 fr.) | Archive | Repeat for side panels
if applicable. (F)
Also log ZPG settings | | XV.I | 1.3.9 Luminance
Dynamic Diag. Res.
ATV | EO&C | | | 1 | | 5 | | T11 (zone plate,
moving) | Lim. Diag. res.
20/4 x3(E) | | Pic mon (Gue 1 fr.) | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV(E).1
XVI(E).4a | 1.3.10 Luminance Dynamic Horiz. Res NTSC Revr (E) | EO&C
Obj | | | | , | 5 |]
 | T11 (zone plate, moving) | Lim H res. 20/4
Half-ampl. H res 4 | | Pic mon
Wvfm mon
(Gate 1 fr.) | Archive | Also log ZPG settings | | XV(E).1 | 1.3.11 Luminance
Dynamic Vert. Res.
NTSC Revr (E) | EO&C | | | | 1 | 5 | | T11 (zone plate,
moving) | Lim. V res.
20/4 | | Pic mon (Gate 1 fr.) | Archive | Also log ZPG settings | | XV(E).1 | 1.3.12 Luminance
Dynamic Diag. Res.
NTSC Revr (E) | EO&C | | - | | • | 5 | | T11 (zone plate,
moving) | Lim. Diag. res
20/4 | | Pic mon (Gate 1 fr.) | Archive | Also log ZPG settings | | XV.2 | 1.3.13 Dynamic Res.
Carnera-generated
Signal | EO&C | | | | | 5 | ıs | M21, M22, M23
M24, M25 M26 | (Expert comment only) | | | needed) | Experts look for, document temporal artifacts. | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs; LS=1.arge Scrn NTSC; ATV=1htachi (E) applies to Enhanced NTSC systems, only Page 2 of 9 1/4/91 # (SIMULCAST & E-NTSC) ATTC Test & Data Matrix Objective Test Procedures, Sect. 3-5, Transient Response; Chromaticity/Colorimetry Characteristics; VCR Compatibility | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | N | |--------------------|--|-------------|----------|------|------------|---------|---------|---------|---|--|-------------|---|------------------------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | D2VTR | Experts | Display | S-still, M-motion seq
T-test pattern | Numerical
Taken/Reported | Graph | Photo | Tape | Notes | | XVI.1b | 3.3.1.2.1. Lumin. Resp.
to Stationary Step:
Horiz. Resp. | Obj
Meas | ~ | | 1 | I(E) | | | T10 (static windows) | Risetime; Ringing:
period, ampl; Ovrsht:
ampl, time; Undrsht:
ampl, time. 72/72 x2(E) | | Wvfm: 8
x2(E) | Archive
HD, D2(E) | Data normalized to pic. | | XVI.1b | 3.3.1.2.2. Lumin. Resp.
to Stationary Step:
Vert. Resp. | Obj
Meas | > | | 1 | 1(E) | | | T10 (static windows) | Transient ampl,
line no.
72?/72 x2(E) | | Wvfm: B
x2(E) | Archive
HD, D2(E) | Measure transient ampls, if any, at top & bottom of pic. Data normalized to pic. | | XVI.Ib | 3.3.2.2.1. Lumin. Resp
to Moving Step:
Horiz. Resp. | Obj
Meas | > | | , | 1(E) | | | T10 (moving windows
@3 H rates) | Risetime; Ringing:
period, ampl;Ovrsh:
ampl, time;Undsh: ampl,
time:216/216 x2(li) | | Pic:
24 ATV +
24 NTSC(E) | Archive
HD, D2(E) | Data normalized to pic. | | XVI.1b | 3.3.2.2.2. Lumin. Resp
to Moving Step:
Vert. Resp. | Obj
Meas | ~ | | 1 | 1(E) | | | T10 (moving windows
@3 V rates) | Risetime; Ringing:
period, ampl;Ovrsh:
ampl, time;Undsh: ampl,
time:216?/216 x2(H) | | Pic:
24 ATV +
24 NTSC(E) | Archive
HD, D2(E) | Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.3.2.1. Chrom.
Resp. to Stationary
Step: Horiz. Resp. | Obj
Meas | > | | ı | 1(E) | | | T10 (static windows) | Risetime; Ringing:
period, ampl;Ovrsh:
ampl, time;Undsh: ampl,
time: 144/144 x2(E) | | Wvfm: 16
x2(E) | Archive
HD, 1)2(E) | Measure transient
ampls, if any, at top
& bottom of pic, R&B
Data normalized to pic | | XVI.2b
XVI.3a | 3.3.3.2.2. Chrom.
Resp. to Stationary
Step: Vert. Resp. | Obj
Meas | / | | | I(E) | | | T10 (static windows) | Transient ampl,
line no.
144?/144 x2(E) | | Wvfm: 16
x2(li) | Archive
HD, D2(E) | Measure both R & B channels. Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.4.2.1. Chrom.
Resp. to Moving Step:
Horiz, Resp. | Obj
Meas | ~ | | 1 | 1(E) | | | T10 (moving windows
@3 H rates) | Risetime; Ring: period,
ampl;Ovrsht: ampl,
time;Undrsht: ampl,
time. 432/432 x2(1:) | | Pic:
48 ATV
48 NTSC(E) | Archive
IID, D2(E) | Measure both color component channels. Data normalized to pic | | XVI.2b
XVI.3a | 3.3.4.2.2. Chrom.
Resp. to Moving Step:
Vert. Resp. | Ohj
Meas | ~ | | , | ı(E) | | | T10 (moving windows
@3 V rates) | Risetime; Ring: period,
ampl;Ovrsht: ampl,
time;Undrsht: ampl,
time: 4327/432 x2(E) | | Pic:
48 ATV
48 NTSC(E) | Archive
HD, D2(E) | Measure both color component channels. Data normalized to pic. | | XVI.1b | 3.3.5. Luminance
Temporal Response | Ohj
Meas | ~ | | 1 |
1(E) | | | T10G (static windows, gated) T5G (radial res., gated) | (Photos, unly) | | Pic &
Wvfm:
16 ATV +
16 NTSC/F | Archive
HD, D2(E) | Photo sets of both test patterns. | | XVI.2b
XVI.3a | 3.3.6. Chrominance
Temporal Response | Obj
Meas | ~ | | 1 | I(E) | | | T10G (static windows, gated) T5G (radial res., gated) | (Photos, only) | | Pic &
Wvfm:
32 ATV +
32 NTSC(E | Archive
HD, D2(E) | Photo sets of both test
patterns, for R & B
channels | | XVI(E).6 | 4.3.1. Color Difference Compatibility (E) | Obj
Meas | ~ | | | 1(E) | | | 17 (color bars) | Vector ampl, phase
differences.
10/10 (E) | | Wvfm: 4
Vector-
scope: 4 | Archive
D2 | Compare vector (ref G)
ampls, phases with
1 dB input change,
photo before & after. | | XVI.2a | 4.3.2. Chrominance
Component Dynamic
Range | Obj
Meas | ~ | | , | | | | T4 (line-rate ramp) | Input attn to clim. any
nonlinearity,
3/3 | | Wvfm: 6 | Archive
HD | Observe nonlinearity in ramp intro d by system, photo both conditions. | | XX. | 5. VCR
Compatibility for
Enhanced NTSC (E) | EO&C | | | 1(E) | 1(E) | 5 | 1.5 | 5 min. video & audio
material | (Comment, only) | | | 8 NTSC
video
casselles | Output is written expert
commentary on diff
between ENTSC &
NTSC recdings on VCRs | RF Test Bed is used in all tests but is checked only where. Display, 24=24 NTSC Revrs, LS=Large Scm NTSC; ATV=Httachi it is used to introduce impairment or interference. (E) ≈ applies to Enhanced NTSC systems, only. "x2(E)" ≈ double number for Enhanced NTSC system # Objective Test Procedures, Sect. 6-12: Tx Spectrum, Degrad. to BTSC Audio, Audio | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | Natas | |---------------------------|--|-------------|-------|------|--------|---------|--------|-----------------------|--|---|--|---------------------------------|------|--| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RFTB | HDD | D2VTR | Ехрепь | Display | S=suil, M=motion seq
T=test pattern | Numerical
Taken/Reported | Graph | Photo | Тарс | Notes | | XVI.1a | 6. Transmitted Spectrum | Obj
Meas | > | > | | | | | T8 (matrix pattern)
Audio material?
Pseudorandom data | | | Spectrum
analyzer
display | | Spectrum used by
ATV system with
all channels fully
loaded. | | XVIII.3a,
3b,3c,
3d | 7.1.1.2 Degradation to
BTSC Audio
ATV -> NTSC | Obj
Meas | ~ | ~ | | | | 6-10
BTSC
Revis | 8 kHz tone; 20-15,000
sweep; audio program
material;D=18 (matrix)
U: T8G (matrix gated) | THD+N@ coch., upper
adj, lin & non-lin_taboo
catibr. 710/?
LR sep 4?/4 | Plot spectral
distr 20Hz
15kHz left
output 1 | | | THD+N from left
channel of all
pairs | | XIX.I | 7.2. Degradation of Ancillary VBI Services ATV -> NTSC | Obj
Meas | > | ~ | | | | | D. T1 (flat field) U: T8G (matrix, gated) | RMS noise on lines
12, 21 cochnl
12/12 | Plot spectral district signal comps lines 12, 21. | | | Cochannel D=-55
U= 6 levels | | XIX.2 | 7.2. Degradation of
Ancillary VBI Services
ATV (E) | Obj
Meas | ~ | ~ | | | | | T8 (matrix) | RMS noise on lines
12, 21
2/2 | Plot spectral
distr of signal
comps lines
12, 21. I | | | | | | 8. Audio, General
Considerations | | | | | | | | ons for the following section luded in Section 8. | ons | | | | | | XVIII. If | 9. E-NTSC Audio
Signal-to-Noise (E) | Obj
Meas | | | | | | | 1 kHz audio tone
T7 (NTSC color bars) | S/N unweighted
S/N weighted
4/4 (E) | Plot broad-
band noise
spectrum.
1 (E) | | | BTSC main audio channels, only. (E) | | XVIII.1a | 10. Dynamic Range | Obj
Meas | | | | | | | l kilz audio tone | (THD+N=70idB
4/4 | | | ~- | All audio channels.
(Assume 4) | | XVIII. Ib | 11.1.3 ATV Non-
linear Distortion
THD+N | Obj
Meas | | | | | | | 20 - 20,000 Hz audio
sweep | | THD+N vs
freq. 32 | | •• | All audio channels
(Assume 4) | | XVIII.16 | 11.1.5 ATV Non-
linear Distortion
THD | Obj
Meas | | | | | | | 8 frequencies or
20 - 20,000 Hz audio
sweep | Harmonic amplitudes
64/64 | | | | All audio channels
(Assume 4) | | XVIII.1b | 11.2.4 ATV Non-
linear Distortion
IMD | Obj
Meas | | | | ٠ | | - | 60 Hz audio tone
7 kHz audio tone | | IMD vs
input level
20 | | | All audio channels.
(Assume 4) | | XVIII.16 | 11 2.5 ATV Non-
linear Distortion
DIM | Obj
Meas | | | | | | | 400 Hz audio tone
750 Hz audio tone
2.4 Khz audio tone | | DIM vs
input level
20 | | | All audio channels.
(Assume 4) | | XVIII.18 | 12. Audio/Video
Delay
ATV | Obj
Meas | | | | | | | T2G (ATV flat field, gated) I kilz audio tone, gated | Delay: video vs audio,
off-on and on-off.
8/8 | | | | All audio channels.
(Assume 4) | | XVIII.1g | 12. Audio/Video
Delay
E NTSC (E) | Obj
Meas | | | | | | | TIG (NTSC flat field, gated) I kHz audio tone, gated | Delay: video vs audio,
off-on and on-off.
4/4 | | | | 2 BTSC channels | RF Test Bed is used in all tests but is checked only where — Display: 24=24 NTSC Revrs; LS=Large Scm NTSC; ATV=Hitachi it is used to introduce impairment or interference. (E) = applies to Enhanced NTSC systems, only. "x2(E)" = double number for Enhanced NTSC system # ATTC Test & Data Matrix Objective Test Procedures, Sect. 13-18 Page 4 of 9 1/4/91 | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | | |----------------------|--|-------------|-------|------|--------|---------|---------|---------|--|---|-------------------------------------|---------------|-------------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD | D2VTR | Experts | Dusplay | S-still, M-metion seq
T-test pattern | Numerical
Taken/Reported | Graph | Photo | Таре | Notes | | XVIII.1c | 13. Audio Frequency
Response | Obj
Meas | | | | | | | 20 - 20,000 audio
sweep @ 3 levels | | Audio out
level vs frog.
12 | : | | All audio channels.
(Assume 4) | | XVIII.1d | 14. Sine Wave Overload
vs Frequency | Obj
Meas | | | | | | | "series of frequencies" | | Plot overload
level is freq
l | | | Overload point:
output drops .2 dB
rel. input. All che.
(Assume 4). | | XVIII.1h | 15. RF Bandwidth &
RF Spectrum. | Obj
Meas | | | | | | | Audi o program
material
AF pink noise | 3 & 30 dB bandwidths,
(from photos)
6/6 | | Spectrum
3 | | Spectrum photos with
all audio che quiet &
loaded with noise &
music. | | XVIII.1e | 16. Stereo Interchannel
Amplitude & Phasing | Obj
Meas | | | | | | | 10+ frequencies
across band | Ampl. shift, phase shift
between channels of
stereo pairs.
40/40 | Plot ampl & phase shifts vs freq. 2 | | | Assume 2 stereo pairs. | | XVIII.1 | 17, Noise Degradation of
Compatible NTSC Audio
(E) | EOA C | | ~ | | | 5 | 24 | T7 (color bars)
Audio program
material | (Written commentary, only) | | | | Experts compare audio from NTSC mod. and E-NTSC system. | | XVIII.1i | 18. Confirmation of
Provisions for Ancillary
Data Signals. | Obj
Meas | | ~ | | | | | Pseudorandom data
T8? (matrix)
? Hz audio tone | BER @ 6+ levels of
C/N.
18+/6+ | | | | | | | | | _ | | | | Audi | o Sul | Document SSWP2-0: | cedures, Sect. 1 | | | | | | Day 36
Day 41 (E) | 1.2.1 Audio Quality
Rating Test | Rating | | | , | 1 (E) | | | A1A10 | | | | IID/DAT
Rating | Rating tests done off site. | | Day 35
Day 40 (E) | 1.2.2 Transmission
Impairment Test | EOAC | | ~ | ı | 1 (E) | | | A2, A3, A8 | (Comment only) | | | HD/DAT
Archive | Experts listen on headphones, write comments. | RF Test Bed is used in all tests but is checked only where—Display: 24=24 NTSC Revrs, LS=Large Scm NTSC; ATV=Hitachi it is used to introduce impairment or interference. (E): applies to Enhanced NTSC systems, on (SIMULCAST) # ATTC Test & Data Matrix Page 5 of 9 of 9 1/4/91 # Objective Test Procedures, Sect. 19, Susceptibility to Interference, Other Impairments. | Time | | | | Re | Source | Utiliza | tion | | Test Signals | | Results | <u> </u> | | | |--------------------|--|----------|----------|-------------|------------|----------|-----------|-----------|--|------------------------------|---|----------|----------------|--| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RFTB | HDD
YTR | D2VTR | l-xperts | Display | S=still, M=motion seq
T=test pettern | Numerical
Taken/Reports 4 | Graph | Photo | Таре | Notes | | XIV.1 | 19.3.1 Random Noise
->NTSC | TeV | ٧ | > | | | 3 | 24 | D: T1(flat field, stat) | ToV
72/I | | | | | | хіv.іь | 19.3.1 Random Noise
->ATV | ToV | ~ | > | | | 5 | ΑΊV | D: T3 (flat field, dyn) | ToV
25/1 | | | <u></u> | | | XIV.1c | 19.3.1 Random Noise
->ATV | PoU | > | > | | | 5 | ATV | D: T9 (text) | PoU
15/1 | | | | | | XIV.1d | 19.3.1 Random Noise
->ATV | Range | ~ | ~ | | •• | 5 | ΑTV | D: S5 (tulips) or
S11 (women w. roses) | Range
levels
6+/6 | | | | "+" indicates
experts may look at
additional levels. | | XIV.1e | 19.3.1 Random Noise
->ATV | Rating | ~ | ~ | 2 | | | | D: \$5 (tulips), \$11
(woman w roses),
M11 desk lamp | | | | 2 D2
Rating | Subj. rating to be done at CRC. | | XIV.4 | 19.3.2. Impulse
Noise
->ATV | τ•v
Δ | ~ | ~ | | | 5 | ATV
24 | D: T3 (flat field, dyn)/
T1 (flat field, stat) | ToV
50/1 | | | | "Threshold" is
difference between
ATV and NTSC | | XIV.2b | 19.4.3.2.1. Static
Multipath
->ATV | ToV | ~ | ~ | | | 5 | ATV | D: 19? (ICAI) | ToV
300/12 | ToV vs +/-delay
(See Fig. 19-5) | | | 12 delays | | XIV.2c | 19.4.3.2.1. Static
Multipath
->ATV | Poli | ~ | ~ | | | 5 | ATV | D: 19? (text) | PoU
180/12 | Pol) vs +/-delay
(See Fig. 19-5.) | | | Experts describe
failure. | | XIV.3b | 19.4.3.2.2. Flutter | ToV | / | ~ | | | 5 | ATV | D: T9? (text) (Same as multipath) | 1/1 | | | | | | XIV.3c | 19.4.3.2.2. Flutter | Poli | ~ | ~ | 2 | 1 | 5 | ΑTV | D: T9? (text) (Same as multipath) | 1/1 | | | | Experts describe failure including rate and level. | | Sea | II
ions 19.5.3.2.1 (Cochanno
II | l), 19.5 | .3.2.2 (| Upper é | k Lowe | r Adjace | ent), and | d 19.5.3 | II | on separate sheets. | | | | | | ХШ.13 | 19.5.3.2.4. Discrete
Frequency Interf.
->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3 (flat field, dyn) | ToV
1250/graph | Carrier:beat
vs intrf freq;
(See Fig. 19-5) | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs; I.S=Large Scm NTSC; ATV=Hitachi # Objective Test Procedures, Sect. 19, Susceptibility to Interference, Other Impairments. Ouality | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | Notes | |--------------------|--|----------|-------|------|------------|---------|--------|---------|---|-------------------------------|--------------------------------------|-------|------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | D2VTR | Expens | Display | S=still, M=motion seq
T=tent pettern | Numerical
Takes/Reported | Graph | Photo | Tape | Notes | | XIV(E).1 | 19.3.1 Random Noise
->NTSC | ToV | \ | ~ | | | 3 | 24 | D: T1 (flat field, static) | ToV
72/1 | | | | | | XIV(E).Ib | 19.3.1 Random Noise
->ATV | ToV | > | ~ | | | 3 | 24 | D: T3 (flat field, dyn) | ToV 72/I | | | | | | XIV(E). Ic | 19.3.1 Random Noise
->ATV | PoU | ~ | ~ | | | 3 | 24 | D: T9 (icxi) | PoU 1/1 | | | | | | XIV(E).4b | 19.3.2. Impulse Noise
->ATV | ToV
△ | ~ | ~ | | | 3 | 24 | D: T3 (flat field, dyn)/
Ti (flat field, static) | ToV 2/1 | | | | "Threshold" is
difference between
ATV and NTSC | | XIV(E).2b | 19 4.3.2.1. Static
Multipath
->ATV | ToV | ~ | ~ | | | 3 | 24 | D: T9? (text) | ToV
12/12 | ToV vs. +/-delay
(See Fig. 19-5.) | | | 12 delays | | | 19.4.3.2.1, Static
Multipath
->ATV | PoU | ~ | ~ | | | 3 | 24 | D: T9? (text) | PoU
12/12 | PoU vs +/-delay
(See Fig. 19-5.) | | | Experts describe failure. | | XIV(E).3b | 19.4.3.2.2. Flutter ->ATV | ToV | ~ | ~ | | | 3 | 24 | D: T9? (text) (Same as multipath) | 1/1 | | | | | | XIV(E).3c | 19.4.3.2.2. Flutter ->ATV | PoU | ~ | ~ | 2 | 1 | 3 | 24 | (Same as multipath) | 1/1 | | | | Experts describe failure including rate and level. | | | | | | | | | | Vide | eo Subjective Tes | st Procedures, S
swp2-0390 | Sect. 1 | _ | | | | Day ?
Day ? (E) | Basic Received Qualit
(Video Subj. Tests,
Sect 1.9 | Rating | | | 1 | 1 | | | S14, M1M10,
M16M20 | | | | 4D2 | Subj. rating to be done at CRC. | | | | | | | | | | | | | | | | | | | ٠. | $RF\ Test\ Bed is used in all tests but is checked only where it is used to introduce impairment or interference.$ Display: 24=24 NTSC Revrs; LS=Large Sem NTSC; ATV=Hitachi ATV->ATV 7 Rating -- ## Resource Utilization Test Signals Time Results Notes Line **TEST ID** Sestill, Memotion seq Numerical HDD Cross Ref TYPE PIXAR RFTB D2VTR Experts Display Oraph Photo Таро T-lest pettern Taken/Reported 19.5.3.2.1. Cochannel D: T1 (flat field, stat) ToV 24 LA.1 3 Interference ToV 144/2 U: T8 (metrix) NTSC->NTSC 19.5.3.2.1. Cochannel Test at 2 freq. D: T1 (flat field, stat) ToV Interference 3 24 offsets. ToV I.A.2.b 288/4 U: T8G (matrix, gated) ATV->NTSC 19.5.3.2.1. Cochannel D: T (sext) PoU 3 24 I.A.2.c Interference PoU 2/2 U: T8G (matrix, gated) ATV->NTSC D: S9 (girl w toys) or 19,5.3.2.1. Cochannel +" indicates S11 (wmn w roses) Range levels Interference 3 experts may look at Range I.A.2.d 12+/12 ATV->NTSC additional levels. U: T8G (metrix, gated D: S9 (girl w toys), S11 19.5.3.2.1. Cochannel (wmn w roses), M14 Subj. rating to be 2 4 D2 Interference Rating I.A.2.e (cochni) done at CRC. Rating ATV->NTSC U: M15 (primary) 19.5.3.2.1. Cochannel D: T3 Test at 2 freq. ToV ToV Interference ATV off sets. 1.B.1.b U: T8 100/4 NTSC->ATV 19.5.3.2.1. Cochannel D: T9 PoU PoU I.B.1.c Interference 5 ATV 30/2 U: T8 NTSC->ATV D: S9 (girl w toys) or 19,5.3.2.1. Cochannel +" indicates Range levels SII (wmn w roses) Interference Range 5 experts may look at ATV I.B.1.d 12+/12 NTSC->ATV additional levels. U: T8 (metrix) 19.5.3.2.1. Cochannel D: S9, S11, M14 4 HD Subj rating to be Interference 2 1 Rating 1.B.1.e done at CRC. U: M15 Rating NTSC->ATV 19.5.3.2.1. Cochannel ToV ToV I.B.2.b Interference 5 ATV D&U: T8GS 50/2 ATV->ATV 19,5.3.2.1. Cochannel PoU PoU 1.B.2.c Interference 5 D&U: 19 30/2 ATV->ATV 19.5.3.2.1. Cochannel +" indicates Range levels Range Interference D&U: S9 or \$11 experts may look at 1.B.2.d 5. 12+/12 ATV->ATV additional levels. 19.5.3.2.1. Cochannel Subj. rating to be done at CRC. 4 HD 2 D&U: \$9, \$11, M14 Interference Rating 1.B.2.e Display. 24=24 NTSC Revrs, I S=Large Sem NTSC; ATV=Hitachi RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. # Objective Test Procedures, Sect. 19, Susceptibility to Interference, <u>Unper & Lower Adjacent Channel Interference</u> Note: Procedures and test signals are same for Upper and Lower adjacent channel tests. | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | | |-------------------------|--|--------|-------------|-------------|--------|---------|---------|----------|---|-----------------------------|---------|-------|-----------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RPTB | HDD | D2VTR | Experte | Display* | S-still, M-motion req
T-test unitern | Numerical
Taken/Reported | Graph | Photo | Tapa | Notes | | II.A.1.
III.A.1. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->NTSC | TeV | > | > | | | 3 | 24 | D: T1 (flat fickl, stat)
U: T8 (matrix) | ToV
432/6 | | | | | | H.A.2.b.
HI.A.2.b. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | TeV | > | > | | | 3 | 24 | D: Ti (flat field, stat) U: T8G (matrix, gated) | ToV
432/6 | | | | | | II.A.2.c.
III.A.2.c. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | PoU | ٧ | > | | | 3 | 24 | D: T (text) U: T8G (matrix, gated) | PoU
6/6 | | | <u></u> | | | II.A.2.d.
III.A.2.d | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | Range | > | ~ | | | 3 | ıs | D: S9 or S11
U: T8G | Range levels
36+/36 | | | | "+" indicales
experts may look at
additional levels. | | II.A.2.e.
III.A.2.e | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | Rating | ~ | ~ | 1 | 2 | | | D: \$9, \$11, M14
U: M15 | | | | 12 D2
Rating | Subj. rating to be done at CRC. | | 11.B.1.b.
111.B.1.b. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3
U: T8 | ToV
150/6 | | | | | | II.B.1.c.
III.B.1.c. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9
U: T8 | PoU
90/6 | | | | | | 11.B.1.d.
111.B.1.d. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | Range | ~ | ~ | | | 5 | ATV | D: S9 or S11
U: T8 | Range levels
36+/36 | | | | "+" indicates
experts may look at
additional levels. | | H.B.1.e.
HI.B.1.e. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | Rating | ~ | ~ | 2 | 1 | | | D: \$9,\$11,M14
U: M15 | | <u></u> | | 12 HD
Rating | Subj. rating to be done at CRC. | | H.B.2.b.
HI.B.2.b. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | ToV | ~ | ~ | | | 5 | ATV | D&U: T8GS | ToV
150/6 | | | | | | 11.B.2.c.
111.B.2.c | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | PoU | ~ | ~ | | | 5 | ATV | D&U: T9 | PoU
90/6 | | | | | | 11.B.2.d.
111.B.2.d | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | Rang | _ | ~ | | | 5 | ATV | D.4EU: S9 or SII | Range levels
36+/36 | | | | "+" indicates
experts may look at
additional levels. | | II.B.2.c.
III.B.2.c | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | Retin | · · | ~ | 2 | | | | D&U: S9, S11, M14 | | | | 12 HD
Raing | Subj. rating to be done at CRC. | RF Test Bed is used in all tests but is checked only where—Display: 24=24 NTSC Revrs, LS=Large Scrn NTSC; ATV=Hitacht it is used to introduce ampairment or interference. # Objective Test Procedures, Sect. 19, Susceptibility to Interference, Taboo Channels (9) Interference, Quality | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | N | |---------------------|--|------------|-------------|------
------------|---------|---------|----------|--|-------------------------------------|---------|-------|-----------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | D2VTR | Paperts | Display* | S=still, M=motion seq
T=test pettern | Numerical
Takes/Reported | Graph | Photo | Tapa | Notes | | n.A.1. | 19.5.3.2.3. Taboo
Channel Interference
NTSC->NTSC | ToV | > | ~ | | | 3 | 24 | D: T1 (flat field, stat) U: T8 (matrix) | ToV
1944/27
1800/25 (E) | | | | | | n.A.2.b | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | ToV | > | ~ | | | 3 | 24 | D. T1 (flat field, stat)
U: T8G (matrix, gated) | ToV
1944/27
1800/25 (E) | | | | | | n.A.2.c | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | PoU | ~ | ~ | | | , | 24 | D: T (text)
U: T8G (matrix, gated) | PoU
27/27
25/25 | | | | | | n.A.2.d | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | Range | ~ | ~ | | | 3 | LS | D: \$9 or \$11
U: T8G | Range levels
162+/162
150/150 | | | | Numbers may be less if no interference is observed on some taboo channels. | | n.A.2.e | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | Rating | ~ | ~ | 1 | 2 | | | D: \$9, \$11, M14
U: M15 | | | | 12 D2
Rating | Subj. rating to be done
at CRC. Rating tapes
made for I linear, I
non-linear tabou. | | n.B.2.b | 19.5.3.2.3. Taboo
Channel Interference
NTSC->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3
U: T8 | ToV
675/27
625/25 (E) | | | | | | n.B.2.c | 19.5.3.2.3. Taboo
Channel Interference
NTSC->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9
U: T8 | PoU
405/27
375/25 (E) | | | | | | n.B.2.d | 19.5.3.2.3. Taboo
Channel Interference
ATV->ATV | TeV | ~ | ~ | | | 5 | ATV | D&U: T8GS | ToV
675/27
625/25 (E) | | | | | | n.B.2.e | 19.5.3.2.3. Taboo
Channel Interference
ATV->ATV | PoU | ~ | ~ | | | 5 | ATV | D&U: T9 | PoU
405/27
375/25 (E) | | | | | | "n" = IV | n first column,
7, V, VI, VII, VIII, IX, X
ests repeated for 9 taboo | | | | | | | | | | | | | | | | | | | • | | | , | Video | Subjective Test Document SS | | ect. 1 | | | | | Day 21
Day 20 (E | Basic Received Qualit
(Video Subj Tests,
Sect. 1.9) | y
Ratin | £ | | 2 | 1 (E) | | | S14, M1M10,
M16M20 | | | | 4HD | Subj. rating to be done at CRC. | it is used to introduce impairment or interference. | DRAFT SAMPLE DATA LIST: typical data to | be taken/output for a test 10/19/90 | |--|---| | Test Director | Date | | 1.3.1. Luminance Static Horizontal Resolution Test School | dule Sequence # | | Type of test: EO&C, 5 expert observers Test signal(s): | (Test pettern, photo, mouth sequence, etc.) | | PICTURE MONITOR: | (OUTPUT DATA) | | Limiting horizontal resolution of the center area, in C/APH [1:0.5] | Agreed or mean C/APH | | C/APHC/APHC/APH | С/АРН | | ZPG coefficients (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) | | | Lumitung resolution of the side panets, in C/APH. [1 to 5] | Agreed or mean C/APH* | | C/APH C/APH C/APH | УАРН | | ZPG coefficients [10] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) PHOTOGRAPH: All conditions under which data were taken [2] 1. ID # 2. ID #* | | | VIDEO TAPE RECORD: All conditions under which data were taken [2]. Time code 1 Time code 2 * | | | WAVEF M MONITOR: | | | Half-amputude resolution response of the center area, in C/APH [1 to 5] C/APH | | | ZPG coefficients (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) | | | Half-amplitude resolutionof the side panels, in C/APH. [1 to 5] C/APH C/APH C/APH C/APH | Agreed or mean C/APH* | | ZPG coefficients [10] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) | | | PHOTOGRAPH: All conditions under which data were taken [2] 1. ID # | | | VIDEO TAPE RECORD: All conditions under which data were taken [2] Time code 1 Time code 2* | | * Data taken only where side panels are transmitted differently from center. | Low | Frequency Noise Mod | ulation | |-----------------------|---------------------|---| | Test Date: | ATV Carrier Freq.: | ATV System: | | Video Tape Number: | Time Code: | Test Engineer: | | Test Data Accepted | By: | | | | Expert Observers | | | | 2: 3 | | | 4: | 5: | | | | Interference Levels | | | Threshold of Visibili | ty of Interference: | % | | Point of Unusability: | | % | | Range Ratios 1: | 2: 3: 4: 5: | 6: 7:% | | Recording Levels 1: _ | 2: 3: 4: 5: _ | 6: 7: 8: % | | | Comments | | | | | م ۱۳۰۰ میتنسید کستنسید | | | | م المسابق | | | | | _ | | | | | | | TABLE 1: GENERIC FORMAT FOR OVERALL QUALITY TEST RESULTS | Test Item | sys 1
x sp R | SVE 2 | | | | | | |-----------|-----------------|-----------------|----------|--------|--------|-----------------|---| | | | SYS 2
X SD R | x bD R | x XD A | x sp k | Eye 6
X SD R | MOTES | | 8s 1-n | | | | | | | Across stills, means, SDs, Ranks | | | | | | | | | Item-by-item, notes and comments | | | | | | | | 1 | | | | | | | | | | | | | | l | | | | <u> </u> | | | | , | | | |] ' | | | | | | | 1 | | |] | | | | | | | Ì | | Ì | } | | | | ! |
 | | | | | | | | | | | | <u> </u> | | | Ms 1-n | | | | | | | Across stills, means, SDs, Rank | | | | | <u> </u> | | | | Item-by-item, notes and comment | | | | } | | 1 | ŀ | 1 | 1 | | | | 1 | 1 | 1 | 1 | | • | | | | | | ļ | 1 | } | , | | | ł | | | ł | ł | ł | | | | Ì | | 1 | | | | | | | | l | | 1 | | | | | | ł | } | } | 1 | 1 | ł | 1 | | | | | 1 | 1 | | | | | | | } | 1 | 1 | } | | 1 | | | | } | | | | } | | | | ļ | 1 | | | | 1 | | | | 1 | | | | | | | | | | | } | | 1 | 1 | | | | | | | | | | J. occurrences, observations which might influence the interpretation | # FCC ADVISORY COMMITTEE ON ADVANCED TELEVISION SERVICE SYSTEMS SUBCOMMITTEE WORKING PARTY ON SYSTEM STANDARDS (SS/WP4) ## **OUTLINE FOR 1992 FINAL REPORT** - 1. Executive Summary - 2. Introduction - 3. Background and History - 4. Contributions from the Planning Subcommittee - 4.1. WP1 Working Party on Technology Attributes and Assessment - 4.2. WP2 Working Party on Testing and Evaluation Specifications - 4.3. WP3 Working Party on Spectrum Utilization and Alternatives - 4.4. WP4 Working Party on Alternative Media Technology and BC Interface - 4.5. WP5 Working Party on Economic Factors and Market Penetration - 4.6. WP6 Working Party on Systems Subjective Assessment - 4.7. WP7 Working Party on Audience Research - 4.8. AG1 Advisory Group on Creative Issues - 4.9. AG2 Advisory Group on Consumer/Trade Issues - 5. Contributions from the Systems Subcommittee - 5.1. WP1 Working Party on Systems Analysis - 5.2. WP2 Working Party on Testing and Evaluation - 5.2.1. ATTC Report - 5.2.2. CableLabs Report - 5.2.3. CRC Report - 5.2.4. Field Test Report - 5.3. WP3 Working Party on Economic Assessment - 5.4. WP4 Working Party on System Standards - 6. Contributions from the Implementation Subcommittee - 6.1. WP1 Working Party on Policy and Regulation - 6.2. WP2 Working Party on Transition Scenarios ## 7. Selection Criteria - 7.1. Policy and Regulatory Issues - 7.2. Spectrum Utilization - 7.2.1. Coverage Area - 7.3. Economics - 7.3.1. Cost to Broadcasters - 7.3.2. Cost to Alternative Media - 7.3.3. Cost to Consumers - 7.3.3.1 Receivers - 7.3.3.2 VCRs - 7.3.3.3 Antennas/Receiving Equipment - 7.4. Technology - 7.4.1. Total Viewing Experience Compared to NTSC - 7.4.2. Transmission Robustness - 7.4.3. Range of Services and Features - 7.4.4. Extensibility - 7.4.5. Interoperability Considerations # 8. Analysis of System Data - 8.1. System A - 8.1.1. Policy and Regulatory Issues - 8.1.2. Spectrum Utilization - 8.1.3. Economics - 8.1.4. Technology - 8.2. System B - 8.2.1. Policy and Regulatory Issues - 8.2.2. Spectrum Utilization - 8.2.3. Economics - 8.2.4. Technology - 8.3. System C - 8.3.1. Policy and Regulatory Issues - 8.3.2. Spectrum Utilization - 8.3.3. Economics - 8.3.4. Technology - 8.4. Other Sections as necessary (one per system) ## 9. Recommendations - 9.1. Policy - 9.2. Technology and Standards - 9.3. Regulatory Issues - 10. Implementation Plan - 11. Future Work - 11.1. Development of Standards - 12. Conclusions - 13. Notes and Comment - 14. Bibliography - 15. Acknowledgements # **Appendices** - A1. Raw Data - A2. Methods of Data Reduction # Philosophy for 1992 Final Report This attachment to the draft "Outline for 1992 Final Report" of the Working Party on System Standards (SS/WP4) has been written to articulate clearly the philosophy contained in the outline. The primary goal of the final report is to help the FCC choose an ATV terrestrial broadcasting standard. SS/WP4 results must be usable to that end. The work must take into account issues of inter-operability with alternative media. Secondly, the report should provide the affected industries with information needed to plan and implement an ATV system. The second goal is important, but only after the first is satisfied. The first three chapters are self-explanatory and will be written by SS/WP4. Chapters 4, 5, and 6 are intended to be input contributions from the various groups named. Detailed outlines for these chapters will be written by SS/WP4 in early 1991 and distributed to the other groups as a means of guiding their input to SS/WP4. The rest of the final report is the output of SS/WP4. The substantive work of SS/WP4 begins with Chapter 7 entitled "Selection Criteria". Its existence was suggested by a need to develop, understand, and write down those issues which will set the context for a recommendation. While
not completely separable, those issues are, in general, independent of any specific implementation. This chapter is intended to be a discussion, based on real-world constraints and considerations, of what is important, and why. It is, in a very real sense, the foundation upon which the rest of the report and the rest of SS/WP4's work will be based. Logically, then, it will be the first chapter written. The four sections of Chapter 7 — "Policy and Regulatory Issues", "Spectrum Utilization", "Economics", and "Technology" — identify a set of critical objectives to guide the work of SS/WP4. There may be other considerations identified and added later, but these four topics address issues which are critical to the success of any system. The first section, "Policy and Regulatory Issues", will ask, and hopefully answer, questions such as: Can existing television licensees be granted additional allocations for a simulcast ATV broadcast, or must all interested parties be given an equal opportunity to compete for any available spectrum? This is clearly an issue requiring legal review and SS/WP4 will seek advice from the Implementation Subcommittee. It is also an issue which applies equally to any and all specific systems under consideration and, in that sense, is independent of which proponent system is being discussed.